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1. INTRODUCTION

The conventional boundary element method (CBEM) based on the Kirchho!}Helmholtz
boundary integral equation (BIE) is considered a very useful tool in calculating acoustical
properties on a source surface or in a domain. Although this technique has many
advantageous features in dealing with various acoustical problems, it inevitably su!ers from
the singularity problem in the close near"eld of a source surface. This problem is due to the
singular kernel in the fundamental solution of BIE. In the three-dimensional acoustic
problem, the fundamental solution corresponding to the monopole or dipole source is
proportional to 1/R or 1/R2, where R means the distance between a surface point and a "eld
point. When a "eld point is placed in the very close near"eld to the source surface,
R becomes very small and thus an instability problem will arise in the numerical
integration. This problem can be solved by adopting the non-singular boundary element
method (NBEM) [1]. In this method, all singularities involved in the conventional BIE can
be eliminated by subtracting two propagating plane wave components from the integral
identity. With this method, a precise prediction of acoustical behavior is possible even in the
very close near"eld to a source surface. Currently, precise near"eld prediction by BEM is
considered important in various source identi"cation techniques such as sound intensity
scanning, energy streamline tracking [2], and near"eld acoustical holography [3].

In the close near"eld, where the distance z from the source surface is shorter than about
20% of the characteristic length, the "eld pressure predicted by CBEM has large errors (see
"gures in reference [1]). Although the reason for near"eld inaccuracy has been simply
ascribed to the short distance between "eld points and the source surface, further detailed
explanation in needed for this phenomenon. In this paper, acoustical characteristics of the
predicted "eld are shown and the cause of this problem is explained in some detail.
A pulsating sphere and a parallelepiped cavity are employed for illustrating the near"eld
accuracy of "eld properties and the guidelines for precise prediction are given as a result. All
formulations for CBEM and NBEM calculation are based on those in reference [1].

2. ANALYSIS AND DISCUSSION

The sound radiation from a uniformly pulsating sphere into the in"nite homogeneous
medium is chosen as an example for the exterior problem. When a sphere with a radius of
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Figure 1. Directional pattern of predicted error ratio of "eld pressure for a pulsating sphere model at ka"1 on
the center plane (N

G
"6). D, CBEM and (r!a)/¸

C
"0)01; s, CBEM and (r!a)/¸

C
"0)1; #, NBEM and

(r!a)/¸
C
"0)1 or 0)01.

Figure 2. Predicted spatial distribution of error percentage of "eld pressure for a pulsating sphere model
(ka"1, N

G
"6). (a) CBEM, (b) NBEM.
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a is pulsating with a harmonic surface velocity of ;e +ut, the "eld pressure at a distance
r from the origin is given by

p (r)"
!o

0
c;

r

jka2

(1!jka)
exp Mjk (r!a)N, (1)

where o
0
, c, k denote the density, the speed of sound, and the wave number in the medium

respectively. For BEM calculations, the boundary surface of pulsating sphere with a radius
of 50 mm was discretized into 48 triangular, isoparametric and quadratic elements with 98
nodes. The maximum characteristics length, ¸

C
, of the model was 52)1 mm.

Figure 1 shows the directional pattern of predicted "eld pressure on the horizontal plane
passing through the center of the sphere model. One can observe a large and complicated
oscillating error pattern of the CBEM results, whereas the use of NBEM yields very small
errors in all directions that are less than $1%. When the distance from the surface is very
small, e.g., R,r!a"0)01¸

C
, the pressures predicted by CBEM are oscillating and

under-estimated greatly in all directions. When the distance is increased to R"0)1¸
C
, the

predicted directional values are either under- or overestimated compared to the true



Figure 3. Predicted acoustic "eld properties by using CBEM for a pulsating sphere model at ka"1 (N
G
"6,

R"0)1¸
C
, square denotes the Gauss integration point). (a) Error percentage of "eld pressure amplitude, (b) active

intensity vectors.

Figure 4. Mean error ratio of predicted "eld pressure of a pulsating sphere model at ka"1. NBEM: *5*,
N

G
"1; - - -=- - -, N

G
"3; ) ) ) ǹ) ) ), N

G
"6. CBEM: *h*, N
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"1; - - - s- - -, N
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G
"6.

LETTERS TO THE EDITOR 355
pressure, but the pattern is nearly the same as in the former case. Figure 2 shows the
calculated error ratio of "eld pressure on the horizontal plane. One can "nd that the error is
large in the "eld very close to the Gauss integration points, and diminished to zero with an
increase in distance.

In order to explain this phenomenon in detail, the error ratio is calculated at "nely
meshed "eld points covering more than two elements in tandem. In Figure 3, the error ratio
of "eld pressure predicted by CBEM and the distribution of active intensity vectors are
depicted when R"0)1¸

C
and N

G
is 6. Here, the discrete Gauss integration technique is



Figure 5. The error ratio of interior pressure by CBEM with increase of the longitudinal distance from the
vibrating surface of a parallelepiped cavity: }s}, NBEM; - -]- -, CBEM.

Figure 6. Spatial distribution of error percentage of predicted "eld pressure on the horizontal plane of the
parallelepiped box interior due to a vibrating end face at 140 Hz.
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employed in the numerical integration and N
G

denotes the number of Gauss integration
points. The area of the "eld plane is about 6)5% of the whole surface of the sphere and 1681
(i.e., 41]41 pattern) "eld points are distributed on this surface. Figure 3 explains
graphically that the pressure on an element is subject to in#uence from the Gauss
integration points in the adjacent elements. It is noted that the distribution of "eld pressure
error is highly correlated with the distribution of Gauss integration points. Large errors can
be formed especially at edges or corners of an element, where errors due to nearby
integration points are superposed. From the plot of active intensity, one can "nd that the
Gauss integration points behave like the acoustic sources. In the numerical integration
within an element, the area integral of a function is approximated by the sum of weighted
values of the function at pre-set points, namely, the Gauss integration points. Then, the
positions of reference data change from the boundary nodes to the Gauss integration points
in the numerical calculation process. Consequently, the singularity problem will occur at
the Gauss integration points rather than the boundary nodes.
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The predicted error ratio "eld pressure varying the radial distance is shown in Figure 4.
In this calculation, the polar angle, the azimuth angle, the number of "eld points, and the
area ratio to total spherical surface were the same as the foregoing computation and at each
radial position. The mean level of error ratio is shown by changing the number of Gauss
integration points. One can "nd that the mean error ratio by NBEM is nearly constant
everywhere. The mean error ratio is about !2)5% for N

G
"1, whereas it is less than

!0)3% for N
G
*3. The negative bias error is caused by the modelling error of BEM:

a small di!erence in surface area and volume velocity of the BEM model from the ideal
geometry. This error may be reduced by using the concept of e!ective radius [4]. CBEM
yields large mean error in the close near"eld and the error decreases with increase in
distance. In particular, when N

G
*3 and R'0)2¸

C
, the mean errors are less than $0)5%.

A data point at each radial distance in this "gure corresponds to the mean value of 1681
points at each segmental "eld plane. It should be mentioned that the maximum error ratio
at each "eld plane is very large and such an error occurs near the integration points. The
maximum error ratio calculated by CBEM is about 200 times larger as compared to NBEM
in the close near"eld of R(0)2 ¸

C
. This large error is generated by the singularity problem

near the Gauss integration points. It is observed that the maximum error ratio cannot be
reduced very much even if the number of integration points is increased.

A long parallelepiped with dimensions of 0)3(w)]0)3(h)]1)7(l) m3 was taken as an
example of the interior problem. The boundary element model had 468 linear, triangular,
isoparametric elements and 236 nodes. The maximum characteristic length of an element
was 141)2 mm and N

G
was 6. It was assumed that an end surface at z"0 was vibrating as

a rigid piston with a harmonic velocity of (1#j1)]10~3 at 140 Hz and all other walls were
rigid. The calculation frequency was chosen in order to avoid resonance and anti-resonance
frequencies that would yield large numerical errors. Figure 5 shows the error ratio predicted
by CBEM with an increase in the distance from the vibrating surface, and one can "nd large
error at z/¸

C
"7)8 where a nodal plane exists. Figure 6 illustrates the spatial distribution of

the predicted error by CBEM, where z denotes the longitudinal axis. The "eld pressure
distribution is shown on a horizontal center plane in the interior "eld near the vibrating
wall. Again, large errors can be observed near the Gauss integration points at every
boundary and the error distribution pattern is nearly the same for all walls. It is also noted
that the overall trend of CBEM and NBEM is similar to those shown in the foregoing
"gures for the exterior problem.

The reason why the calculation error is large near the Gauss integration points can be
explained simply as follows. For a function f represented by a local co-ordinate (m, g), the
discrete Gauss integration technique can be expressed as

PP f (m, g) dmdg"
NG

+
i/1

w
i
f (m

i
, g

i
), (2)

where w
i

is the weighting factor for each integration point. Direct implementation of
equation (2) in the BIE leads to a discretized BIE. Integral calculations diverge when the
"eld point is located very close to the surface because the nature of singularities is not
altered in the numerical process. In this calculation, the distance between surface points and
"eld points are changed to those between Gauss points and "eld points. Consequently, the
actual singularity problem will exist near Gauss integration points rather than surface points.

3. CONCLUSIONS

In this paper, the near"eld characteristics and accuracy of radiated acoustic "eld
predicted by using BEM is investigated and discussed for two types of BIE formulations:
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conventional and non-singular BIE. In the numerical process of BEM, the actual reference
computation points are the Gauss integration points in the elements rather than the
boundary nodes. Consequently, the singularity of fundamental solution in CBEM is
generated near the Gauss integration points. The absolute mean error ratio is more than
5% when the distance from the surface is less than 5% of the characteristic length, when
more than three integration points are used. However, it should be noted that the maximum
local error ratio calculated by using CBEM is more than 100% in the close near"eld of
R(0)2¸

C
, that is, about 200 times larger as compared to NBEM. It is found that large

errors exist expecially at edges or corners due to the superposition of errors from nearby
integration points including those in adjacent elements. The amount of mean near"eld error
in using CBEM is highly a!ected by the number of Gauss integration points. However, the
mean error ratio by NBEM is nearly constant everywhere and it is less than !0)3% when
more than three integration points are used. However, in using NBEM, one has to submit
to an increase of calculation time and computer memory space in spite of the
aforementioned advantages. When the BEM is used in energy streamlining or near"eld
acoustical holography, one should carefully choose proper calculation techniques in order
to predict the acoustic "eld properties in the near"eld precisely.
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